Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/8896
Title: Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties
Authors: Cyganik, Łukasz
Binkowski, Marcin
Kokot, Grzegorz
Rusin, Tomasz
Popik, Paulina
Bolechała, Filip
Nowak, Roman
Wróbel, Zygmunt
John, Antoni
Keywords: Trabecular bone; Young's modulus; Micro-computed tomography; Bone mineral density; Digital Image Correlation; Microscale properties
Issue Date: 2014
Citation: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 36, (2014), s. 120-134
Abstract: According to the literature, there are many mathematical relationships between density of the trabecular bone and mechanical properties obtained in macro-scale testing. In micro-scale, the measurements provide only the ranges of Young's modulus of trabeculae, but there are no experimentally tested relationships allowing the calculation of the distribution of Young's modulus of trabeculae within these experimental ranges. This study examined the applicability of relationships between bone density and mechanical properties obtained in macro-scale testing for the calculation of Young's modulus distribution in micro-scale. Twelve cubic specimens from eleven femoral heads were cut out and micro-computed tomography (micro-CT) scanned. A mechanical compression test and Digital Image Correlation (DIC) measurements were performed to obtain the experimental displacement and strain full-field evaluation for each specimen. Five relationships between bone density and Young's modulus were selected for the test; those were given by Carter and Hayes (1977), Ciarelli et al. (2000), Kaneko et al. (2004), Keller (1994) for the human femur, and Li and Aspden, 1997. Using these relationships, five separate finite element (FE) models were prepared, with different distribution of Young's modulus of trabeculae for each specimen. In total, 60 FE analyses were carried out. The obtained displacement and strain full-field measurements from numerical calculations and experiment were compared. The results indicate that the highest accuracy of the numerical calculation was obtained for the Ciarelli et al. (2000) relationship, where the relative error was 17.87% for displacements and 50.94 % for strains. Therefore, the application of the Ciarelli et al. (2000) relationship in the microscale linear FE analysis is possible, but mainly to determine bone displacement.
URI: http://hdl.handle.net/20.500.12128/8896
DOI: 10.1016/j.jmbbm.2014.04.011
ISSN: 1751-6161
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Cyganik_Prediction_of_Young's_modulus.pdf5,69 MBAdobe PDFView/Open
Show full item record


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons